Low Potential of Basimglurant to Be Involved in Drug-Drug Interactions: Influence of Non-Michaelis-Menten P450 Kinetics on Fraction Metabolized.
نویسندگان
چکیده
Basimglurant, a novel mGlu5-negative allosteric modulator under development for the treatment of major depressive disorder, is cleared via cytochrome P450 (P450)-mediated oxidative metabolism. Initial enzyme phenotyping studies indicated that CYP3A4/5 dominates basimglurant metabolism and highlights a risk for drug-drug interactions when it is comedicated with strong CYP3A4/5 inhibitors or inactivators; however, a clinical drug-drug interaction (DDI) study using the potent and selective CYP3A4/5 inhibitor ketoconazole resulted in an area under the curve (AUC) AUCi/AUC ratio of only 1.24. A further study using the CYP3A4 inducer carbamazepine resulted in an AUCi/AUC ratio of 0.69. More detailed in vitro enzyme phenotyping and kinetics studies showed that, at the low concentrations attained clinically, basimglurant metabolic clearance is catalyzed mainly by CYP1A2. The relative contributions of the enzymes were estimated as 70:30 CYP1A2:CYP3A4/5. Using this information, a clinical study using the CYP1A2 inhibitor fluvoxamine was performed, resulting in an AUCi/AUC ratio of 1.60, confirming the role of CYP1A2 and indicating a balanced DDI risk profile. Basimglurant metabolism kinetics show enzyme dependency: CYP1A2-mediated metabolism follows Michaelis-Menten kinetics, whereas CYP3A4 and CYP3A5 follow sigmoidal kinetics [with similar constant (KM) and S50 values]. The interplay of the different enzyme kinetics leads to changing fractional enzyme contributions to metabolism with substrate concentration, even though none of the metabolic enzymes is saturated. This example demonstrates the relevance of non-Michaelis-Menten P450 enzyme kinetics and highlights the need for a thorough understanding of metabolism enzymology to make accurate predictions for human metabolism in vivo.
منابع مشابه
Comparing Logistic and Michaelis-Menten Multiphasic Models for Analysis of in vitro Gas Production Profiles of some Starchy Feedstuffs
Two multi-phasic models (logistic (LOG) and Michaelis-Menten (MM)) with three sub-curves were used to describe gas production kinetics of corn (CG), barley (BG), wheat (WG) and triticale (TG) grains. In each model sub curve, 1 describes the gas production caused by fermentation of the soluble fraction, gas production caused by fermentation of the non-soluble fraction is described in sub curve 2...
متن کاملPossible involvement of multiple human cytochrome P450 isoforms in the liver metabolism of propofol.
Previous studies of propofol (2,6-diisopropylphenol) pharmacology have shown that this widely used anaesthetic drug is extensively cleared from the body by conjugation of the parent molecule or its quinol metabolite. On the basis of potential influence of propofol on the metabolism of co-administered agents, many investigators have evaluated the effects of propofol on cytochrome P450 (CYP) acti...
متن کاملIn vivo CYP3A4 heteroactivation is a possible mechanism for the drug interaction between felbamate and carbamazepine.
Atypical (non-Michaelis-Menten) kinetics are commonly observed with CYP3A4 substrates in vitro. If relevant in vivo, cytochrome P450 heteroactivation could give rise to increased drug clearance. To test the possible in vivo relevance of atypical cytochrome P450 kinetics, we investigated the role of heteroactivation in the therapeutically relevant drug interaction between the anti-epileptics fel...
متن کاملIn vitro metabolism of the calmodulin antagonist DY-9760e (3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate) by human liver microsomes: involvement of cytochromes p450 in atypical kinetics and potential drug interactions.
Human cytochrome P450 (P450) isozyme(s) responsible for metabolism of the calmodulin antagonist 3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate (DY-9760e) and kinetic profiles for formation of its six primary metabolites [M3, M5, M6, M7, M8, and DY-9836 (3-[2-[4-(3-chloro-2-methylphenyl)piperazinyl]ethyl]-5,6-di...
متن کاملMultiple substrate binding by cytochrome P450 3A4: estimation of the number of bound substrate molecules.
Cytochrome P450 3A4, a major drug-metabolizing enzyme in man, is well known to show non-Michaelis-Menten steady-state kinetics for a number of substrates, indicating that more than one substrate can bind to the enzyme simultaneously, but it has proved difficult to obtain reliable estimates of exactly how many substrate molecules can bind. We have used a simple method involving studies of the ef...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 360 1 شماره
صفحات -
تاریخ انتشار 2017